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Abstract

In this paper we investigate a new design concept for generating multi-scale structures in natural convection with the objective of

maximizing the heat transfer density, or the heat transfer rate per unit of volume. The flow volume is filled with vertical equidistant

heated blades of decreasing lengths. The spacings between the blades are optimized for maximal heat transfer density. Smaller blades

are installed in the center plane between two adjacent longer blades, in the entrance region where the boundary layers are thin and

the fluid is unheated. Based on the same principle, new generations of even smaller blades are added stepwise to the multi-scale

structure. Constructal theory is applied to each new generation of blades, and this method leads to the optimal spacings between

blades and the optimal lengths scales. As the number of length scales increase, the flow rate and the volume-averaged heat transfer

density increase. It is also shown that there is a smallest (cutoff) length scale below which the boundary layers are no longer distinct,

and where the sequence of generating optimal length scales ends. The maximized heat transfer density increases as the optimized

complexity of the flow structure increases.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In design, space is at a premium. This is why the
miniaturization and compactness of electronic devices is

a challenge and a driving force for research. One method

for generating optimal space-constrained flow configu-

rations is constructal theory and design (Bejan, 2000;

Bejan et al., 2004). According to this method, the flow

configuration is free to morph in the pursuit of maxi-

mal global performance under global constraints. The

resulting optimal (constructal) configuration is deduced,
not assumed. It is the winner of the competition in

which all the eligible configurations are simulated and

compared.

One class of constructal-design configurations are the

optimal internal spacings determined for heat-generat-

ing volumes cooled with channels, staggered plates, and
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pin fins (Bar-Cohen and Rohsenow, 1984; Bejan, 1984,

2000; Bejan and Sciubba, 1992). In each case, the total

volume is fixed, the objective is to maximize the global
thermal conductance of the package (or the volume-

averaged heat transfer rate density), and the result is a

single length scale: the optimal spacing. This length scale

is distributed uniformly throughout the volume.

In the present paper we take the constructal design of

optimal spacings in a new direction. Instead of a single

optimal spacing, we seek an entire sequence of opti-

mized spacings, one spacing smaller than the preceding
one. We seek an optimized multi-scale flow structure

that achieves even higher levels of heat transfer rate

density, under the same constraints as the single-scale

structures optimized in the past. The key to higher

performance is the increased design freedom, because

more length scales (to be optimized) represent more

degrees of freedom in the design. More length scales

mean that the flow structures can morph in more design
directions. In the end, the optimized multiple scales

are distributed nonuniformly through the available

volume.

mail to: dalford@duke.edu


Nomenclature

cP specific heat, J/kg K

D spacing, meD dimensionless channel spacing, Eq. (29)

g gravitational acceleration, m/s2

i index

k thermal conductivity, W/mK

Li lengths, m

m smallest scale for asymmetric plates (mþ 1¼
total number of length scales)

ms smallest scale for symmetric plates

n number of plates

P pressure, Pa

Pr Prandtl number, m=a
q0 heat transfer rate per unit length, W/m

q000 heat transfer density, W/m3

�q000 average heat flux, W/m2, Eq. (7)
R residual vector

S geometrical parameter

Ra Rayleigh number, Eq. (14)

T temperature, K

u horizontal velocity component, m/s

u solutions vector

v vertical velocity component, m/s

x, y Cartesian coordinates, m

W volume length, m

Greeks

a thermal diffusivity, m2/s

b coefficient of volumetric thermal expansion,

K�1

d velocity boundary layer thickness, m
dT thermal boundary layer thickness, m

q density, kg/m3

m kinematic viscosity, m2/s

l viscosity, kg/sm

Subscripts

0, 1, 2 generation of multi-scale architecture

i order of length scale

j trial mesh

opt optimum

max maximum

w wall

0 initial fluid temperature

Superscripts

ð�Þ dimensionless variables

n iteration number, Eq. (39)
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The multi-scale constructal design presented in this

paper is for a volume cooled by laminar single-phase

natural convection. We chose natural convection be-

cause it has been studied extensively (Chappidi and Eno,

1990; Anand et al., 1992; Roberts and Floryan, 1998;

Kazansky et al., 2003; Auletta et al., 2003; Marcondes

and Maliska, 1999), and the classical results can be used

as reference (benchmark) for the new performance
exhibited by optimized multi-scale structures. Further-

more, in natural convection several studies have recog-

nized the possibility of augmenting heat transfer by

inserting a smaller plate between two parallel plates

(Naylor and Tarasuk, 1993a,b; Andreozzi and Manca,

2001; Andreozzi et al., 2002; Bejan and Fautrelle, 2003;

Bejan et al., 2004). In this paper, we take this idea to

many steps of greater complexity, analytically and
numerically, and suggest that the future of augmenta-

tion and compactness belongs to optimized multi-scale

flow structures that are distributed nonuniformly.
2. Constructal flow geometry

Constructal theory has been applied to the optimi-
zation of internal structure in many flow configurations

(Bejan, 2000; Bejan et al., 2004). The geometry of the
flow system is free to change while its global perfor-

mance is being maximized. Heat and fluid flow resis-

tances are distributed optimally through the available

volume. From this process of ‘‘optimal distribution of

imperfection’’ results the flow architecture.

Fig. 1 illustrates the principle by which resistances are

distributed through a flow volume, or how heat transfer

surfaces are allocated to volume elements. Thermal
boundary layers develop as the fluid sweeps the heat

generating surfaces, and a volume of unheated fluid

appears between the boundary layers. The amount of

unheated fluid depends on the shape of the total volume

V . Two extreme shapes of V are shown in Fig. 1a and c.

If V is too square, Fig. 1a, the unheated region is large,

and the volume occupied by working fluid (the bound-

ary layers) is small. If V is too slender, Fig. 1c, the
boundary layers merge early, and the stream warms up.

It becomes ‘overworked’, i.e., poorer as a coolant. These

two extremes suggest the existence of an optimal V
shape: V is occupied most fully by working fluid when

its boundary layers merge at the end of the channel, Fig.

1b.

This principle is employed in Fig. 2, where a fixed

two-dimensional volume L0 � W is filled optimally with
vertical plates cooled by laminar natural convection.

The spacing D0 is such that the thermal boundary layers



Fig. 1. The optimal volume shape for maximal heat transfer density.

Fig. 2. Optimal package of vertical plates with one spacing.
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merge at the top of the structure. Each plate has negli-

gible thickness. The question explored in this paper is
whether the performance of the parallel-plates structure

can be improved beyond that of Fig. 2. The answer is

yes, and it is based once more on the principle outlined

in Fig. 1. The volumetric density of heat transfer can be

increased by inserting heat transfer surfaces in the flow

regions that contain unheated fluid, for example, in the

wedges of cold fluid between the tips of two boundary

layers.
The left side of Fig. 3 shows how a new plate of

length L1 is inserted in the center of the entrance to the
original D0 channel. The local spacing D1 is equal to

D0=2. The new length L1 can be predicted graphically,
from the intersection of its boundary layers with the

boundary layers of the L0 plates. Reliance on such

intersections is consistent with the principle of filling the

available volume with ‘‘working’’ fluid as much as

possible.

For Pr � 1, the boundary layer thickness plate scales

as (e.g., Bejan, 1984),

d ¼ dT 	 y
gbðTw � T0Þy3

am

� ��1=4

ð1Þ



Fig. 3. The insertion of smaller plates in the unused flow.
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which means that d increases as y1=4. The boundary

layers of the L0 and L1 plates merge approximately at a

height of y � L0=16. This approximation yields the ratio

between L1 and L0,

L1 ffi
1

16
L0 ð2Þ

The right side of Fig. 3 shows that this principle can

be invoked again, if the wedge between L0 and L1

contains enough unheated fluid. The length of the new

blade is L2 ffi L1=16. In summary, if the process of filling

the flow with plates of smaller and smaller scales con-

tinues up to a small scale Lm, the length-generating

algorithm is

Li ¼
1

16
Li�1; Di ¼

1

2
Di�1 i ¼ 1; 2; . . . ;m ð3Þ

Furthermore, the number of blades with the same size

increases as the blade size decreases. In the fixed volume

shown in Fig. 3, the number of L0 blades is

n0 ¼
W
D0

ð4Þ

where

D0 ffi 2dðL0Þ ffi 2L0

gbðTw � T1ÞL3
0

am

� ��1=4

ð5Þ

The number of blades of size L1 is n1 ¼ n0, because there

are as many L1 blades as there are D0 spacings. For

scales smaller than L1, however, the number of blades

doubles with every step,

ni ¼ 2ni�1; i ¼ 2; 3; . . . ;m ð6Þ
3. Heat transfer

For the multi-scale packing constructed in Section 2,

it is possible to estimate the heat transfer contribution
associated with each scale by assuming that the heat

transfer from each surface is equal, in order of magni-

tude sense, to the heat transfer through the boundary

layer. For the L0 plates, we write (cf. Bejan, 1984)

�q000L0

kDT
ffi 0:517

gbDTL3
0

am

� �1=4

ð7Þ

where �q000 is the heat flux averaged over L0, and

DT ¼ Tw � T1. Noting that each L0 blade has two

boundary layers, the total heat flux transferred from all

the L0 blades is

q00 ¼ 2n0�q000L0 ffi 1:034n0kDT
gbDTL3

0

am

� �1=4

ð8Þ

By analogy, Eq. (8) can be rewritten for every Li smaller

than L0,

q0i ffi 1:034nikDT
gbDTL3

i

am

� �1=4

ð9Þ

The heat transfer rate vehicled by all blades is

q0 ¼
Xm
i¼0

q0i ffi 1:034n0kDT
gbDTL3

0

am

� �1=4

S ð10Þ

where the sum S is a geometric parameter

S ¼ 1þ n1

n0

L1

L0

� �3=4

þ n2

n0

L2

L0

� �3=4

þ � � � þ nm
n0

Lm

L0

� �3=4

ð11Þ
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According to Eqs. (3) and (6), S increases monotonically

with the number of length scales,

S ¼ 1þ 1

6
ð1� 4�mÞ ð12Þ

4. Heat transfer rate density

The global figure of merit of the designed flow

structure is the total heat transfer rate packed in the

given volume, q0, or the heat transfer rate density,

q000 ¼ q0=WL0. Rewriting Eq. (10) in terms of the Ray-

leigh number Ra

q0

kDT
¼ 1:034

W
D0

Ra1=4S ð13Þ

Ra ¼ gbDTL3
0

am
ð14Þ

we see that the heat transfer rate density increases with

the Rayleigh number and with S. However, if S (or m) is

too large, the spacing between the plates vanishes, and

this stops the flow of coolant. The smallest scale is key,

because it is the ‘‘grain’’ of the complex structure. To

deduce the smallest scale, note that the theoretical der-
ivation developed in Sections 2 and 3 is valid when the

boundary layers are distinct, otherwise the boundary

layer heat transfer mechanism will collapse. This con-

sideration brings up the fact that boundary layers must

be slender in order to be distinct, and that their slen-

derness decreases as their length Li decreases. The

boundary layer of rank i ¼ m is marginally slender when
Fig. 4. Symmetrical insertion of sma
Lm PDm ð15Þ

or, according to Eq. (3), when

L0 P 8mD0 ð16Þ
By substituting Eq. (5) into Eq. (16), we find that the

order of magnitude of m is

m6
lnðRa1=4=2Þ

3 ln 2
ð17Þ
5. Symmetrically installed plates

In this section we describe an alternative to the multi-
scale structure shown in Fig. 3. Instead of installing a

smaller plate in the entrance formed between large

plates, we install two symmetric plates around the tip of

each long plate. The symmetrical structure is shown in

Fig. 4, where the D0 spacing between two long plates L0,

is occupied by two L1 plates separated by the distance

D1 ¼ D0=3. The new boundary layers generated by the

L1 plates develop as described by Eq. (1), and merge
with the L0 boundary layers downstream at L1 ffi L0=81.
Because the number of L0 plates is n0, the number of

L1 plates is n1 ¼ 2n0.
As in Sections 2–4, complexity can be increased by

adding pairs of smaller plates in the entrance regions.

The algorithm that rules the growing symmetrical

structure is

Li ¼
1

81
Li�1 ð18Þ
ller plates in the unused flow.



Fig. 6. Relative performance of symmetrical and asymmetrical multi-

scale structures.
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Di ¼
1

3
Di�1 ð19Þ

ni ¼ 3i�12n0 ð20Þ
where i ¼ 1; 2; . . . ;ms. The heat transfer analysis leads

again to Eqs. (7)–(11), with the difference that the geo-

metric factor S is now

S ¼ 1þ 1

12
ð1� 3�2msÞ ð21Þ

where ms is the number of steps used in the symmetric
construction. Note that ms is different than m, which

refers to the structure of Fig. 3. The subscript s refers

to the symmetric construction of Fig. 4. The number

ms can be determined based on the same principle as in

Eq. (15): the importance of the slenderness of the

boundary layers as a ‘‘cutoff’’ criterion in the construc-

tion. The smallest length scale Lms
cannot be smaller

than

Lms
PDms

ð22Þ
According to Eq. (19), Lms

¼ 81�msL0 and Dms
¼ 3�msD0.

By using Eq. (5) for D0 we arrive at

ms 6
lnðRa1=4=2Þ

3 ln 3
ð23Þ

Fig. 5 shows that ms is smaller than m. The performance

of the symmetrical multi-scale structure is determined by

combining Eqs. (13) and (21),

q0s
kDT

¼ 1:034
W
D0

Ra1=4 1

�
þ 1

12
ð1� 3�2msÞ

�
ð24Þ

This can be compared with Eqs. (12) and (13), to see

how the heat transfer density changes when the structure

changes from Fig. 3 to Fig. 4. The ratio q0s=q
0 is plotted

in Fig. 6, and shows that when m increases above 2, the

symmetric structure (Fig. 4) offers a heat transfer density
Fig. 5. Number of length scales ðm;msÞ versus flow strength ðRaÞ.
that is 7% smaller than in the asymmetric structure (Fig.
3). In this analytical solution, m values larger than 2 are

unrealistic because Ra exceeds 109, and the flow regime

is turbulent.
6. Numerical formulation

In the second phase of this study we optimized the
multi-scale structure numerically. The computational

domain is shown in Fig. 7. The walls are kept at Tw and

cold fluid is drawn into the channel at T1. The dimen-

sional governing equations for constant-property flow

satisfying the Oberbeck–Boussinesq approximation are

ou
ox

þ ov
oy

¼ 0 ð25Þ

q u
ou
ox

�
þ v

ou
oy

�
¼ � oP

ox
þ lr2u ð26Þ

q u
ov
ox

�
þ v

ov
oy

�
¼ � oP

oy
þ lr2vþ qgbðT � T1Þ ð27Þ

qcP u
oT
ox

�
þ v

oT
oy

�
¼ kr2T ð28Þ

where r2 ¼ o2=ox2 þ o2=oy2. The variables and the fluid

properties are defined in the nomenclature. It is conve-

nient to nondimensionalize the variables,

ð~x; ~y; eD; eLÞ ¼ ðx; y;D; LÞ
L0

ð29Þ

ð~u;~vÞ ¼ ðu; vÞ
ða=L0ÞRa1=2Pr1=2

ð30Þ



Fig. 7. Computational domain.
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eT ¼ T � T1
Tw � T1

ð31Þ

eP ¼ P
ðla=L2

0ÞRa1=2Pr1=2
ð32Þ

such that Eqs. (25)–(28) become

o~u
o~x

þ o~v
o~y

¼ 0 ð33Þ

Ra
Pr

� �1=2

~u
o~u
o~x

 
þ ~v

o~u
o~y

!
¼ � oeP

o~x
þr2~u ð34Þ

Ra
Pr

� �1=2

~u
o~v
o~x

 
þ ~v

o~v
o~y

!
¼ � oeP

o~y
þr2~vþ Ra

Pr

� �1=2eT
ð35Þ

ðRaPrÞ1=2 ~u
oeT
o~x

 
þ ~v

oeT
o~y

!
¼ r2eT ð36Þ

The boundary conditions are indicated on Fig. 7a for one

length scale, and Fig. 7b for two length scales. The walls

are impermeable with no-slip ð~u ¼ ~v ¼ 0Þ and at constant

temperature, eT ¼ 1. As the flow configuration is a
sandwich of boundary layers, the slenderness of the

channel is a consequence of the optimization process, and

this allows us to assume on the entrance plane ð~y ¼ 0Þ
uniform velocity profile ð~u ¼ 0Þ, (o~v=o~y ¼ 0, as required

by mass conservation) and isothermal fluid ðeT ¼ 0Þ. The

velocity and temperature boundary conditions on the

outlet plane are o~u=o~y ¼ o~v=o~y ¼ oeT =o~y ¼ 0. These

boundary conditions are a realistic approximation for
slender channels in the high Rayleigh number regime.

The same flow and temperature boundary conditions

were used for simulating more complex configurations

ðmP 2Þ. Symmetry was used in all the numerical simu-

lations. The boundary conditions on the plane of sym-

metry were ~u ¼ o~v=o~x ¼ oeT =o~x ¼ 0. This allowed us to

discretize only half of the flow domain, and use a zero-

thickness for the second plate of length eL1. This saved a
significant amount of grid work for structures with

m ¼ 1. The thickness of the eL1 plate was also set to zero in

structures with m ¼ 2, where the dimensionless thickness

of the eL2-long plate was set equal to 10�4.

The flow and the temperature field were simulated for

several configurations, one differing slightly from the

next, in order to determine the overall heat transfer

density. The figure of merit is based on the total rate of
heat transfer from the plates to the fluid,



Table 1

Grid refinement test

Nodes Elements ~q ~qj � ~qjþ1

~qjþi

���� ����
707 250 141.625 –

1161 384 143.858 0.0155

1749 553 145.576 0.0119

2431 744 147.062 0.0102

3255 972 148.269 0.0082
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q0 ¼ k
Z L0

0

oT
ox

� �
x¼D0=2

dy � k
Z L0

0

oT
ox

� �
x¼�D0=2

dy

þ
Xm
i¼1

ni k
Z Li

0

oT
ox

� �
x¼Dþ

i

dy

"
� k

Z Li

0

oT
ox

� �
x¼D�

i

dy

#
ð37Þ

where ðmþ 1Þ is the number of length scales. The

dimensionless overall heat transfer density ðq000 ¼ q0=
L0D0Þ is

~q ¼ q000L2
0

kðTw � T1Þ
ð38Þ

Eqs. (25)–(28) were solved using a finite element code

(FIDAP, 1998). The numerical domain was discretized

nonuniformly using quadrilateral elements with 9 nodes

each one. The explicit appearance of the pressure was

eliminated based on a penalty function, with an error

factor set at 10�8. The nonlinear equations resulting

from the Galerkin finite element method were solved by

successive substitutions and Newton–Raphson scheme.
The upwind formulation was applied in order to control

spatial numerical instabilities generated at high Ra.
The convergence criteria were

kuðnÞ � uðn�1Þk
kuðnÞk 6 0:001 and

kRðuðnÞÞk
kR0k

6 0:001 ð39Þ

Because of the presence of boundary layers, the mesh

design received special attention and was exhaustively

tested. The grid refinement test for a simple channel

(Fig. 7a) shows that the solution becomes mesh inde-
pendent if a nonuniform grid is used in the ~x direction,

and a uniform grid is used in the ~y direction, with the

smaller elements located close the verticals walls to

capture the thermal boundary layers. The initial guess

used for the grid size in ~x direction was the boundary

layer thickness scale, d 	 L0Ra�1=4. The mesh study

showed that for Ra ¼ 105 and 106, the heat flux density

was insensitive to further grid refining if 101 nodes per
unit of length were used in both directions. For Ra ¼ 107

and 108, 201 nodes per L were used in both directions.

This means that if we were simulating the channeleL0 ¼ 1, eD0 ¼ 0:15 for Ra ¼ 105 and 106, the grid had

101 nodes in the ~y direction and 15 nodes in the ~x
direction. However, to simulate the same channel for

Ra ¼ 107 and 108, 201 nodes are required in the ~y
direction, and 31 nodes in the ~x direction. Table 1 shows
one example of how grid independence was achieved

for Ra ¼ 105, Pr ¼ 0:7, and eD ¼ 0:15.
Grid refinement tests showed that the non-uniform

grid was necessary in both directions, especially as the

number of scales increases (e.g., Fig. 7b). The grid in the
~x direction was generated as follows: 201 nodes per L for

Ra ¼ 105, 301 nodes for Ra ¼ 106, and 401 nodes for

Ra ¼ 107–108. In order to capture the boundary layers
on the auxiliary plate, the domain was divided in such a

way that the smallest elements were always close to the

wall. In the ~y direction, the grid had 201 nodes along eL0,

and was double-graded uniformly from 06 ~y6 L1 for

Ra ¼ 105. For Ra ¼ 106, 301 nodes were used along eL0,

and the grid was triple-graded uniformly for 06 ~y6 eL1.

For Ra ¼ 107 and 108, the grid had 401 nodes along eL0,

and was quadruple-graded along 06 ~y6 L1. For exam-

ple, in the simulation of the channel ðeL0 ¼ 1; eD0 ¼ 0:15Þ
at Ra ¼ 105, with one auxiliary plate ðeL1 ¼ 0:1Þ located

at ~x ¼ 0, the grid had 15 nodes in the range – eD0=2 6

~x6 0, 15 nodes in the range 06~x6 eD0=2, 41 nodes

distributed uniformly from 06 ~y6 eL1, and 161 nodes
for eL1 6 ~y6 eL0. For Ra ¼ 107 and 108, the grid had 61

nodes in ~x direction, 81 nodes along 06 ~y6 eL1 and 321

nodes along eL1 6 ~y6 eL0. This procedure was adopted

for all the configurations reported in this paper.
7. Discussion

The search for the maximum heat transfer density

started with the simplest structure possible (one length

scale, L0, or m ¼ 0). In this case, there is only one degree

of freedom, D0. The optimal spacing was found by fixing

the Rayleigh number ðRa ¼ 105–108Þ and the Prandtl

number ðPr ¼ 0:7Þ, and then varying eD0. The result foreD0;opt was compared with the available literature, in

order to validate the numerical code. The procedure was
repeated several times to cover the range 105

6Ra6 108.

Fig. 8 shows that the plate-to-plate spacing has a strong

effect on the heat transfer density. The axes of Fig. 8 are

nondimensionalized according to the theoretical solu-

tions presented in Bejan (1984, 2000),eDoptRa1=4 	 2:3 ð40Þ

~qmaxRa�1=2 P 0:45 ð41Þ
The figure shows that the optimum plate-to-plate spac-
ing, which corresponds to the heat transfer density peak,

is located between 2 and 3 on the abscissa, which is in

good agreement with Eq. (40). The heat transfer density

reaches a maximum at ~qRa�1=2 ¼ 0:443, which is very

close to the theoretical prediction, Eq. (41).

A consistent global optimization method had to be

used as the number of length scales present in the multi-

scale structure increased. For cases in which one L1 plate



Fig. 8. The effect of the plate-to-plate spacing on the heat transfer

density.

Fig. 10. The optimized lengths of packages with two and three length

scales.
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is inserted in the center of the entrance zone of the L0-

long channel ðm ¼ 1Þ, the optimization process was

performed in two nested loops, because of the two de-

grees of freedom: eD0 and eL1. In the inner loop, the

values for Ra, Pr, and eL1 were specified, and eD0 was

varied until ~qmax was reached. The outer loop required

that the inner loop was repeated for many values of eL1,

such that all the possible combinations of eD0 and eL1

were considered. The result, ~qmax ðm ¼ 1Þ, was ‘twice
maximized’ because it was maximized with respect to

both eL1 and eD0. The same procedure was performed for

cases where m ¼ 2, where the degrees of freedom were

three: eD0, eL1 and eL2.

Fig. 9 shows a summary of the dimensionless optimal

spacing for m ¼ 0, 1 and 2. Note that eD0;opt increases

slightly with m, and cannot be correlated as in Eq. (40).

The number of length scales has two effects on the
optimum spacing, which are represented by the power

law correlationeD0;opt ffi aRa�r ð42Þ
Fig. 9. The effect of complexity ðmÞ on the optimal spacing.
where parameters a and r are functions of the number of

scales. The factor a increases with the number of length

scale, and the factor r decreases as m increases. The

disagreement between Eq. (40) and the results obtained
numerically for configurations in which m > 0 is minor,

and this shows that Eq. (40) is a robust result.

Fig. 10 shows the optimized length scales of the

smaller plates for m ¼ 1 and 2. All length scales increase

with Ra. The slenderness of the channel also increases in

this direction. An important feature is that eL1;opt andeL2;opt agree in order of magnitude with Eq. (3). Another

interesting finding is that eL1;optðm ¼ 1Þ is greater thaneL1;optðm ¼ 2Þ. In other words, the optimized length L1 is

shorter when smaller plates ðL2Þ are inserted.

Fig. 11 shows the variation of the maximal heat

transfer density for m ¼ 0, 1 and 2. Diminishing returns

are evident: the difference between the ~qmax values of two

consecutive multi-scale structures decreases as m in-

creases. The average heat transfer density increases by
Fig. 11. The maximized heat transfer density of packages with one, two

and three length scales.
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12% from the simplest structure ðm ¼ 0Þ to one with two

length scales ðm ¼ 1Þ, and by 6% from m ¼ 1 to m ¼ 2.

This feature was anticipated theoretically in Eq. (18),

where an asymptotic behavior for q0 was observed.
However, it is more useful to express Eq. (18) in terms of

maximum heat transfer density, by setting eD0 ¼ eD0;opt

in Eq. (18), where eD0;opt is given by Eq. (40):

~qmaxRa�1=2 ffi 0:45 1

�
þ 1

6
ð1� 4�mÞ

�
ð43Þ

Fig. 12 shows a comparison between the theoretical

solution, Eq. (43), and the numerical maximal heat

transfer density. The agreement is good in an order of

magnitude sense. Both solutions exhibit the correct

asymptotic trend as m increases. Diminishing returns are

also observed as m increases. Furthermore, in structures
Fig. 13. The temperature distribution in packag

Fig. 12. Maximum heat transfer density versus number of scales:

comparison between the theoretical solution and the numerical results.
with m > 2 the theoretical maximum heat transfer den-

sity reaches a plateau with no substantial gain for

additional complexity. The plateau can be related to the

cutoff anticipated in Eq. (17), which states that the heat
transfer density gain associated with increasing com-

plexity is zero at m ffi 1 when Ra ¼ 105, and at m ffi 2

when Ra ¼ 108. According to Eq. (17), when Ra reaches

105 the structure is close to the cutoff region, because we

have reached numerically configurations with m ¼ 2.

This means that when Ra ¼ 105 the insertion of a new

generation of smaller length scales ðL3Þ will not change

the heat transfer density significantly.
Fig. 13 shows the numerical temperature distribution

inside a section of the WL0 space of Fig. 2, for three

optimized structures: m ¼ 0, 1 and 2, at Ra ¼ 106 and

Pr ¼ 0:7. The section consists of only four L0-long

channels. The temperature ranges between two main

colors, red ðeT ¼ 1Þ and blue ðeT ¼ 0Þ. As the number of

length scales increases, the color red is distributed more

uniformly, illustrating the progress towards maximal
heat transfer rate density, or ‘‘optimal distribution of

imperfection’’ (Bejan, 2000).
8. Conclusions

In this paper we presented and evaluated a concept

for maximizing the heat transfer rate density in a fixed
volume cooled by natural convection. The notion of

optimal plate-to-plate spacings, known from earlier

studies, was used to generalize the concept, and to de-

velop a sequence of optimal spacings. The opportunity

for performing better than the one-optimal-spacing

structure comes from the observation that in the
es with one, two and three length scales.
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entrance between parallel plates there is a volume of

unused flow: isothermal fluid that has not interacted

with the plates yet. It is in this unused volume that the

designer inserts new plates of appropriately smaller size.
According to the numerical results, the improvement

in global performance associated with the optimal

insertion of the first and second generations of smaller

plates was significant, increasing the heat transfer den-

sity by about 12% and 6%, respectively. Diminishing

results were also evident, showing that the contribution

of each new generation of plates is less important than

the contribution of the preceding generation.
The act of refining the structure near the entrance

plane (Fig. 13) continues until the newest and smallest

plates are so small that boundary layers are no longer

distinct. The smallest scale plays the role of cutoff. The

number of distinct length scales increases as ln Ra1=4 as

the flow strength ðRaÞ increases. The design sequence of

adding new length scales is guided by the shape of the

core fluid in each entrance region: new plates are in-
serted in every such region.

In this new paper, the new concept was presented in

the simplest situation, namely the limit where the hori-

zontal dimension of the available space (W , Fig. 2) is

much larger than the largest spacing ðD0Þ. In this limit

the number of L0-long channels is large, and all the

channels are the same, cf. the element studied numeri-

cally in Fig. 7. When W is not much larger than D0, the
number of L0 plates is not large, and the effect of the

vertical walls of theW -wide space becomes significant. In

conclusion, an important future extension of this paper

would be to study and optimize numerically multi-scale

flow structures in which the number of the largest lengths

is small. Such studies will show that the optimized

architectures reported in this paper continue to hold (as

approximate, nearly optimal structures) even when the
lateral walls have an effect. Such robustness, which is

evident in other multi-scale flow structures (e.g., trees,

Bejan, 2000) deserves to be studied and documented.
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